在2022年的亚马逊KDD杯中,我们旨在采用自然语言处理方法来提高搜索结果的质量,从而大大增强用户体验并与搜索引擎进行电子商务。我们讨论了这项竞赛的实用解决方案,在任务一中排名第六,任务第二和任务3中排名第三。
translated by 谷歌翻译
阴影对于逼真的图像合成至关重要。基于物理的阴影渲染方法需要3D几何形状,这并不总是可用。基于深度学习的阴影综合方法从光信息到对象的阴影中学习映射,而无需明确建模阴影几何形状。尽管如此,它们仍然缺乏控制,并且容易出现视觉伪像。我们介绍了Pixel Heigh,这是一种新颖的几何表示,它编码对象,地面和相机姿势之间的相关性。像素高度可以根据3D几何形状计算,并在2D图像上手动注释,也可以通过有监督的方法从单视RGB图像中预测。它可用于根据投影几何形状计算2D图像中的硬阴影,从而精确控制阴影的方向和形状。此外,我们提出了一个数据驱动的软影子生成器,以基于软性输入参数将软性应用于硬阴影。定性和定量评估表明,所提出的像素高度显着提高了阴影产生的质量,同时允许可控性。
translated by 谷歌翻译
这封信总结并证明了界限输入的界限(围兜)稳定性的概念,用于广泛的参数线性非线性非线性神经架构的重量融合,因为它通常适用于广泛的增量梯度学习算法。实际的围兜收敛条件是来自每个单独的学习点或批次的派生证明,用于实时应用。
translated by 谷歌翻译
用于计算病理(CPATH)的深度分割模型的发展可以帮助培养可解释的形态生物标志物的调查。然而,这些方法的成功存在主要瓶颈,因为监督的深度学习模型需要丰富的准确标记数据。该问题在CPATH领域加剧,因为详细注释的产生通常需要对病理学家的输入能够区分不同的组织构建体和核。手动标记核可能不是收集大规模注释数据集的可行方法,特别是当单个图像区域可以包含数千个不同的单元时。但是,仅依靠自动生成注释将限制地面真理的准确性和可靠性。因此,为了帮助克服上述挑战,我们提出了一种多级注释管道,以使大规模数据集进行用于组织学图像分析,具有病理学家in-循环的细化步骤。使用本市管道,我们生成最大的已知核实例分段和分类数据集,其中包含近百万分之一的H&E染色的结肠组织中标记的细胞核。我们发布了DataSet并鼓励研究社区利用它来推动CPATH中下游小区模型的发展。
translated by 谷歌翻译